effective point of measurement in cylindrical ion chamber for megavoltage photon beams
نویسندگان
چکیده
introduction for dose measurement in megavoltage (mv) photon beams with ion chambers, the effect of volume occupied by the air cavity is not negligible. therefore, the result of measurement should be corrected with a displacement perturbation correction factor (pdis) or using an effective point of measurement (epom). the aim of this study is to calculate the epom for cylindrical ion chamber and to evaluate the fixed epom that was recommended by standard dosimetry protocols. materials and methods percent depth doses (pdds) for 6 mv and 18 mv were measured with two types of chambers for different depths and field sizes. the epom was calculated using results obtained from measurement data for two types of chambers, comparison of the readings, and using dosimetry, mathematical, and statistical consideration. for displacement correction factor 12∆r'> =0, 12∆r'> = 0.6r and different 12∆r'>, the minimum standard deviations ratio (sdrs) were calculated at several depths and field sizes. results maximum level of sdrs was about 0.38% and 0.49% (when assuming variable 12∆r'>) for 6 mv and 18 mv, respectively (which was less than 0.5% and acceptable). this quantity was greater than one (for assuming 12∆r'> = 0.6r) and greater than 2 when there was no shift ( 12∆r'> =0) conclusion the results show that the recommended shift for cylindrical ion chamber in dosimetry protocols (upstream of 0.6r) is not correct and using a fixed value for the epom at all photon beam energies, depths, and field sizes is not suitable for accurate dosimetry.
منابع مشابه
Effective Point of Measurement in Cylindrical Ion Chamber for Megavoltage Photon Beams
Introduction For dose measurement in Megavoltage (MV) photon beams with ion chambers, the effect of volume occupied by the air cavity is not negligible. Therefore, the result of measurement should be corrected with a displacement perturbation correction factor (Pdis) or using an effective point of measurement (EPOM). The aim of this study is to calculate the EPOM for cylindrical ion chamber and...
متن کاملApplication of spherical diodes for megavoltage photon beams dosimetry.
PURPOSE External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detec...
متن کاملCalculating weighting factors for mixing megavoltage photon beams to achieve desirable dose distribution in Radiotherapy
Introduction: Many studies have shown the effects of delivered dose distribution due to the incident photon energy on the tumor and healthy tissues. The ability to access the most appropriate radiation energy is essential to achieve the optimal treatment planning but there is a serious limitation in number of energies available on radiation therapy machines can restrict it. <s...
متن کاملIntermediate Megavoltage Photon Beams for Improved Lung Cancer Treatments
The goal of this study is to evaluate the effects of intermediate megavoltage (3-MV) photon beams on SBRT lung cancer treatments. To start with, a 3-MV virtual beam was commissioned on a commercial treatment planning system based on Monte Carlo simulations. Three optimized plans (6-MV, 3-MV and dual energy of 3- and 6-MV) were generated for 31 lung cancer patients with identical beam configurat...
متن کاملCalculating Weighting Factors for Mixing Megavoltage Photon Beams to Achieve Desirable Dose Distribution in Radiotherapy
Background: In radiotherapy, low-energy photon beams are better adapted to the treated volume, and the use of high-energy beams can reduce hot spots in the radiation therapy. Therefore, mixing low and high energies with different ratios can control the rate of hotspots, as well as the dose distribution of the target volume.Material and Methods: The percentage depth doses (PDDs) were calculated ...
متن کاملOn few-view tomographic reconstruction with megavoltage photon beams.
Currently portal imaging devices are used to obtain information on patient localization during radiation therapy treatments. Such obtained information is two dimensional in nature, limited to the plane of the captured image. It has been proposed that megavoltage computed tomography images be reconstructed to overcome this limitation. This study explores the feasibility of reconstructing tomogra...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of medical physicsجلد ۱۰، شماره ۲، صفحات ۱۴۷-۱۵۵
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023